Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mills, Caitlin; Alexandron, Giora; Taibi, Davide; Lo_Bosco, Giosuè; Paquette, Luc (Ed.)Social interactions among classroom peers, represented as social learning networks (SLNs), play a crucial role in enhancing learning outcomes. While SLN analysis has recently garnered attention, most existing approaches rely on centralized training, where data is aggregated and processed on a local/cloud server with direct access to raw data. However, in real-world educational settings, such direct access across multiple classrooms is often restricted due to privacy concerns. Furthermore, training models on isolated classroom data prevents the identification of common interaction patterns that exist across multiple classrooms, thereby limiting model performance. To address these challenges, we propose one of the first frameworks that integrates Federated Learning (FL), a distributed and collaborative machine learning (ML) paradigm, with SLNs derived from students' interactions in multiple classrooms' online forums to predict future link formations (i.e., interactions) among students. By leveraging FL, our approach enables collaborative model training across multiple classrooms while preserving data privacy, as it eliminates the need for raw data centralization. Recognizing that each classroom may exhibit unique student interaction dynamics, we further employ model personalization techniques to adapt the FL model to individual classroom characteristics. Our results demonstrate the effectiveness of our approach in capturing both shared and classroom-specific representations of student interactions in SLNs. Additionally, we utilize explainable AI (XAI) techniques to interpret model predictions, identifying key factors that influence link formation across different classrooms. These insights unveil the drivers of social learning interactions within a privacy-preserving, collaborative, and distributed ML framework—an aspect that has not been explored before.more » « lessFree, publicly-accessible full text available July 12, 2026
-
Free, publicly-accessible full text available July 1, 2026
-
Free, publicly-accessible full text available January 27, 2026
-
Free, publicly-accessible full text available January 27, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
The majority of current research on the application of artificial intelligence (AI) and machine learning (ML) in science, technology, engineering, and mathematics (STEM) education relies on centralized model training architectures. Typically, this involves pooling data at a centralized location alongside an ML model training module, such as a cloud server. However, this approach necessitates transferring student data across the network, leading to privacy concerns. In this paper, we explore the application of federated learning (FL), a highly recognized distributed ML technique, within the educational ecosystem. We highlight the potential benefits FL offers to students, classrooms, and institutions. Also, we identify a range of technical, logistical, and ethical challenges that impede the sustainable implementation of FL in the education sector. Finally, we discuss a series of open research directions, focusing on nuanced aspects of FL implementation in educational contexts. These directions aim to explore and address the complexities of applying FL in varied educational settings, ensuring its deployment is technologically sound, beneficial, and equitable for all stakeholders involved.more » « less
An official website of the United States government
